Associative Memory in Gene Regulation Networks
نویسندگان
چکیده
The pattern of gene expression in the phenotype of an organism is determined in part by the dynamical attractors of the organism’s gene regulation network. Changes to the connections in this network over evolutionary time alter the adult gene expression pattern and hence the fitness of the organism. However, the evolution of structure in gene expression networks (potentially reflecting past selective environments) and its affordances and limitations with respect to enhancing evolvability is poorly understood in general. In this paper we model the evolution of a gene regulation network in a controlled scenario. We show that selected changes to connections in the regulation network make the currently selected gene expression pattern more robust to environmental variation. Moreover, such changes to connections are necessarily ‘Hebbian’ – ‘genes that fire together wire together’ – i.e. genes whose expression is selected for in the same selective environments become co-regulated. Accordingly, in a manner formally equivalent to well-understood learning behaviour in artificial neural networks, a gene expression network will therefore develop a generalised associative memory of past selected phenotypes. This theoretical framework helps us to better understand the relationship between homeostasis and evolvability (i.e. selection to reduce variability facilitates structured variability), and shows that, in principle, a gene regulation network has the potential to develop ‘recall’ capabilities normally reserved for cognitive
منابع مشابه
Associative learning and memory duration of Trichogramma brassicae
Learning ability and memory duration are two inseparable factors which can increase theefficiency of a living organism during its lifetime. Trichgramma brassice Bezdenko (Hym.:Trichogrammatidae) is a biological control agent widely used against different pest species.This research was conducted to study the olfactory associative learning ability and memoryduration of T. brassicae under laborato...
متن کاملA Study on Associative Neural Memories
Memory plays a major role in Artificial Neural Networks. Without memory, Neural Network can not be learned itself. One of the primary concepts of memory in neural networks is Associative neural memories. A survey has been made on associative neural memories such as Simple associative memories (SAM), Dynamic associative memories (DAM), Bidirectional Associative memories (BAM), Hopfield memories,...
متن کاملA Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks
Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN). In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN) which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple faul...
متن کاملNeural Network Applications F1.4 Associative memory
This section considers how neural networks can be used as associative memory devices. It first describes what an associative memory is, and then moves on to describe associative memories based on feedforward neural networks and associative memories based on recurrent networks. The section also describes associative memory systems based on cognitive models. It also highlights the ability of neur...
متن کاملNeural associative memories and sparse coding
The theoretical, practical and technical development of neural associative memories during the last 40 years is described. The importance of sparse coding of associative memory patterns is pointed out. The use of associative memory networks for large scale brain modeling is also mentioned.
متن کامل